Crystal chemistry of $Cd_2P_2O_7 - A_2P_2O_7$ phosphates; $A \equiv Sr$, Pb, Mg, Co and Ni

A. Alaoui El Belghiti and A. Boukhari

Laboratoire de Chimie du Solide Appliquée, Département de Chimie, Faculté des Sciences, Université Mohammed V, Avenue Ibn Batouta, Rabat (Morocco)

E. M. Holt

Department of Chemistry, Oklahoma State University, Stillwater, OK 74078 (USA)

Abstract

Domains of composition of $Cd_{2-x}A_x P_2O_7$, $0 \le x \le 2$, $A \equiv Sr$, Mg, and Ni, have been established by powder diffraction methods. Solid solutions have been found near $Cd_2P_2O_7$ and $A_2P_2O_7$, $A \equiv Sr$, Mg and Ni. New phases have been identified using single-crystal X-ray diffraction. The mixed diphosphates $CdPbP_2O_7$ and $CdCOP_2O_7$ crystallize in the triclinic space group $P\overline{1}$; $CdSrP_2O_7$ crystallizes in the monoclinic space group $P2_1/c$. The diphosphates $CdSrP_2O_7$ and $CdCOP_2O_7$ are isostructural with α -Ca₂P₂O₇ and $Cd_2P_2O_7$ respectively. All the phosphate structures obtained in this work are closely related to the dichromate type.

1. Introduction

The diphosphates with bivalent cations $A_2P_2O_7$ are characterized by the existence of two types of structures. The first group ($A \equiv Mg$, Mn, Fe, Co, Ni, Cu and Zn) [1-13] is of the thortveitite type [14] in which $P_2O_7^{4-}$ exhibits a staggered conformation. The thortveitite Sc₂Si₂O₇ was investigated by Zachariasen in 1930. He pointed out that the Si-O-Si link in the Si₂O₇⁴⁻ pyrosilicate anion is linear. The second group ($A \equiv Cd$, Ca, Sr, Ba and Pb) [15-23] is of the dichromate type with an eclipsed $P_2O_7^{4-}$ conformation. The potassium dichromate structure K₂Cr₂O₇ was resolved by Brandon *et al.* [24] in 1967.

Diphosphate structures of the type $A^{II}B^{II}P_2O_7$ are less well known. Only $SrNiP_2O_7$ [25], $CaCoP_2O_7$ [26], $Ba-CoP_2O_7$, $BaNiP_2O_7$ [27], $BaCuP_2O_7$ [28], $PbCoP_2O_7$, $PbBaP_2O_7$ [29] were found to be in the dichromate family; $CuFeP_2O_7$ [29], $CaCuP_2O_7$ [30], $SrCuP_2O_7$ [31] are of the thortveitite type.

The solid solutions $Cd_{2-x}A_x P_2O_7$, $0 \le x \le 2$, $A \equiv Ca$ and Cu, have been synthesized as powder [32, 33]. Solid solutions have been found near $Cd_2P_2O_7$ and $A_2P_2O_7$. The $Cd_2P_2O_7-Ca_2P_2O_7$ system presents three solid solutions. The compositions of the first domain $(0 \le x \le 0.40)$ are isostructural with $Cd_2P_2O_7$, and the compositions of the second $(0.40 < x \le 1.00)$ have the same monoclinic space group as $(Cd_{0.625}Ca_{0.375})_2P_2O_7$, while the compounds of the third $(1.70 \le x \le 2)$ are isostructural with β -Ca₂P₂O₇ [32]. However, when $A \equiv Cu$, two solid solutions $(0 \le x \le 0.40, 1.60 \le x \le 2)$ have been identified to be respectively isostructural with Cd₂P₂O₇ and β-Cu₂P₂O₇ diphosphates [33]. New phases have been identified by single-crystal X-ray diffraction which previously did not identify diphosphates: $(Cd_{0.625}Ca_{0.375})_2P_2O_7$ [32], CdSrP₂O₇, CdBaP₂O₇ [34] and $(Cd_{0.5}Cu_{0.5})_2P_2O_7$ [33]. Cd–Ca and Cd–Cu mixed sites have been obtained in $(Cd_{0.625}Ca_{0.375})_2P_2O_7$ and $(Cd_{0.5}Cu_{0.5})_2P_2O_7$ phosphates; CdSrP₂O₇ is of the α -Ca₂P₂O₇ type [17]. All these phosphates possess a dichromate-type structure except for $(Cd_{0.5}Cu_{0.5})_2P_2O_7$.

The present work deals with crystal chemistry results of $Cd_2P_2O_7-A_2P_2O_7$ systems where $A \equiv Sr$, Pb, Mg, Co and Ni.

2. Experimental details

The starting materials $Cd_2P_2O_7$ and $A_2P_2O_7$ were synthesized by grinding together stoichiometric amounts of $(NH_4)_2HPO_4$, AO, ACO₃ or $Co(NO_3)_2 \cdot 6H_2O$, $A \equiv Sr$, Pb, Mg and Ni, and heating them progressively to 1173 K with intermittent regrinding, according to the following equations:

$$2ACO_{3} + 2(NH_{4})_{2}HPO_{4} \longrightarrow A_{2}P_{2}O_{7} + 4NH_{3}^{\dagger}$$
$$+ 2CO_{2}^{\dagger} + 3H_{2}O^{\dagger} \quad (A \equiv Cd, Sr)$$
$$2AO + 2(NH_{4})_{2}HPO_{4} \longrightarrow A_{2}P_{2}O_{7} + 4NH_{3}^{\dagger}$$
$$+ 3H_{2}O^{\dagger} \quad (A \equiv Pb, Mg, Ni)$$
$$2Co(NO_{3})_{2}, 6H_{2}O + 2(NH_{4})_{2}HPO_{4}$$
$$\longrightarrow Co_{2}P_{2}O_{7} + 4NH_{3}^{\dagger} + 2''N_{2}O_{5}'^{\dagger} + 15H_{2}O^{\dagger}$$

Diphosphates with compositions $Cd_{2-x}A_xP_2O_7$ ($0 \le x \le 2$) have been obtained by heating mixtures of $Cd_2P_2O_7$ and $A_2P_2O_7$ to 873 K and then to 1173 K according to the equation

$$(1 - x/2)\operatorname{Cd}_{2}\operatorname{P}_{2}\operatorname{O}_{7} + (x/2)\operatorname{A}_{2}\operatorname{P}_{2}\operatorname{O}_{7}$$
$$\longrightarrow \operatorname{Cd}_{2 - x}\operatorname{A}_{x}\operatorname{P}_{2}\operatorname{O}_{7} \quad (0 \le x \le 2)$$

Polycrystalline samples were characterized using a CGR (Theta 60) powder diffractometer with Cu K α_1 ($\lambda = 1.54051$ Å). *D* spacing values have been calibrated using silicon as an internal standard. Unit cell parameters for the solid solutions have been refined using least-squares techniques. The density has been determined experimentally using a pyconometer in diethylorthophtalate at ambient temperatures.

Single crystals of $(Cd, A)_2P_2O_7$ have been prepared by fusion in the presence of excess P_2O_5 with the molar ratio $(Cd, A)_2P_2O_7:P_2O_5 = 0.88$, $A \equiv Sr$, Pb and Co.

Crystals of $(Cd, A)_2P_2O_7$ were mounted on a Syntex P3 automated diffractometer. Unit cell dimensions were determined by least-squares refinement of the best angular alignment procedures [35].

3. Crystal chemistry

3.1. $Cd_2P_2O_7 - Sr_2P_2O_7$ system

Powder diffraction analysis of mixed diphosphates $Cd_{2-x}Sr_xP_2O_7$, $0 \le x \le 2$, reveals the existence of solid solutions A ($0 \le x \le 0.60$), B ($1.00 \le x < 1.20$) and C ($1.20 \le x \le 2$). The other domains are mixtures of parent compounds.

3.1.1. Domain A: $0 \le x \le 0.60$

The solid solution obtained between x = 0 and x = 0.60 is isostructural with $Cd_2P_2O_7$. Figure 1 shows the variation in the unit cell volume of this solid solution. As Cd^{2+} is replaced by increasing amounts of Sr^{2+} ions, the larger ionic radius of Sr^{2+} is reflected in the increased cell volume.

3.1.2. Domain B: $1.00 \le x < 1.20$

The compounds of this domain are isostructural with $CdSrP_2O_7$ which is isostructural to α -Ca₂P₂O₇ [34].

Fig. 1. Variation in unit cell volume (cubic ångströms) of the solid solutions $Cd_{2-x}Sr_xP_2O_7$ in domains A ($0 \le x \le 0.60$) and C ($1.20 \le x \le 2$).

Fig. 2. Variation in density of $Cd_{2-x}Sr_xP_2O_7$ compounds in domains A ($0 \le x \le 0.60$) and C ($1.20 \le x \le 2$).

The powder spectra of materials within this domain exhibit only a very small change in the cell dimensions with a change in the composition x.

3.1.3. Domain C: $1.20 \le x \le 2$

X-ray spectra of compositions in the domain C are similar to that of α -Sr₂P₂O₇. The linear variation in the cell volume is shown in Fig. 1.

Figure 2 reflects the decrease in density in domains A and C with increase in x. The mixture of B and C domains around the composition 1.20 could not be observed by the X-ray diffraction technique because α -Ca₂P₂O₇ (domain B) and α -Sr₂P₂O₇ (domain C) structures are closely related [17, 20].

The domain of the solid solution $Cd_{2-x}Ca_xP_2O_7$ ($0 \le x \le 1.00$) as reported below, is larger than that observed with $Cd_{2-x}Sr_xP_2O_7$ ($0 \le x \le 0.60$) and the domain ($1.70 \le x \le 2$) of $Cd_{2-x}Ca_xP_2O_7$ is narrower than that of $Cd_{2-x}Sr_xP_2O_7$ ($1.20 \le x \le 2$).

3.2. $Cd_2P_2O_7 - Ni_2P_2O_7$ system

The results of X-ray spectrum suggested that the system $Cd_2P_2O_7 - Ni_2P_2O_7$ has only two solid solutions. Compositions on the first solid solution ($0 \le x \le 0.60$) are isostructural with $Cd_2P_2O_7$. The compositions of the second domain ($1.60 \le x \le 2$) are similar to α - or β -Ni₂P₂O₇. The two allotropes α - and β -Ni₂P₂O₇ are very closely related. The $\beta \rightarrow \alpha$ transition (843 K) is accompanied by doubling of the *a* and *c* cell parameters [8, 9]:

$$\beta - \text{Ni}_{2}\text{P}_{2}\text{O}_{7} (C2/m) \quad a = 6.501 \text{ Å} \quad b = 8.239 \text{ Å}$$

$$c = 4.48 \text{ Å} \quad \beta = 104.14^{\circ}$$

$$\alpha - \text{Ni}_{2}\text{P}_{2}\text{O}_{7} (B2_{1}/c) \quad a = 13.093 \text{ Å} \quad b = 8.275 \text{ Å}$$

$$c = 8.975 \text{ Å} \quad \beta = 104.94^{\circ}$$

Thus, the powder X-ray diffraction results have been indexed in the $B2_1/c$ space group.

Figure 3 presents the linear variation in unit cell volume in both domains. Figure 4 shows the decrease in density with increasing x.

Fig. 3. Variation in unit cell volume (cubic angströms) of the solid solutions $Cd_{2-x}Ni_xP_2O_7$, $0 \le x \le 0.60$ and $1.60 \le x \le 2$.

Fig. 4. Variation in density in domains of compositions $Cd_{2-x}Ni_xP_2O_7$, $0 \le x \le 0.60$ and $1.60 \le x \le 2$.

3.3. $Cd_2P_2O_7 - Mg_2P_2O_7$ system

The identification of the compounds of the $Cd_2P_2O_7-Mg_2P_2O_7$ system reveals two solid solutions. The domain of compositions ranging between x = 0 and x = 0.40 is isostructural with $Cd_2P_2O_7$. The X-ray spectra of the compounds belonging to the other domain $(1.20 \le x \le 2)$ are similar to that of α - or β -Mg_2P_2O_7 which could not be identified with the X-ray technique as mentioned above for α - or β -Ni₂P₂O₇. The α forms (β forms) of Ni₂P₂O₇ and Mg₂P₂O₇ are isomorphous [1, 2].

The linear evolution of the density of this domain can be observed in Fig. 5.

Fig. 5. Variation in density of $Cd_{2-x}Mg_xP_2O_7$, $0 \le x \le 0.40$ and $1.20 \le x \le 2$.

3.4. $Cd_2P_2O_7 - A_2P_2O_7$ system, $A \equiv Co, Pb$

Only single crystals were prepared in this system having a composition specified by x = 1: CdCoP₂O₇ and CdPbP₂O₇ diphosphates. Single-crystal data are reported in Table 1.

4. Crystal structure results

Table 1 gives the cell parameters and space group of $(Cd, A)_2P_2O_7$ single crystals, $A \equiv Ca$, Sr, Ba, Pb, Co and Cu, identified in $Cd_2P_2O_7-A_2P_2O_7$ phosphates. Table 2 presents the cation coordination, average Cd-O, A-O and P-O bonds distances and P-O-P angles for dichromate or thortveitite-type structure.

The P–O–P angles range between $130(9)^{\circ}$ (CdSrP₂O₇) and $134(7)^{\circ}$ (CdCoP₂O₇) for the dichromate family.

In the phases $(Cd, A)_2P_2O_7$; $A \equiv Ca, Sr, Ba, Pb, Co$ and Cu, the cation Cd^{2+} is coordinated to five $(CdSrP_2O_7, CdCoP_2O_7)$ and six oxygen atoms $((Cd_{0.625}Ca_{0.375})_2P_2O_7, CdBaP_2O_7, (Cd_{0.5}Cu_{0.5})_2P_2O_7)$. However, the cations Ba^{2+} (CdBaP_2O_7), Ca^{2+} $((Cd_{0.625}Ca_{0.375})_2P_2O_7)$ and Sr^{2+} (CdSrP_2O_7), Co²⁺ $(CdCoP_2O_7)$ and Cu^{2+} ((Cd_{0.5}Cu_{0.5})_2P_2O_7) exhibit

TABLE 1. The unit cell parameters and space groups of $CdAP_2O_7$, $A \equiv Ca$, Sr, Ba, Pb, Co and Cu

Diphosphate	Space group	Cell parameters (Å) and angle (deg)		Unit cell volume (Å ³)	
$Cd_{1.25}Ca_{0.75}P_2O_7$		a = 15.477(5) c = 6.667(2) $\beta = 154.78(9)$	b = 7.222(2) $\alpha = 122.93(2)$ $\gamma = 60.68(2)$	266.5(1)	
$CdSrP_2O_7$	$P2_{1}/n$	a = 5.414(1) c = 12.878(5)	b = 8.615(3) $\beta = 90.01(3)$	600.6(4)	
CdBaP ₂ O ₇	ΡĪ	a = 5.641(1) c = 7.624(2) $\beta = 89.83(2)$	$b = 7.038(2) \alpha = 78.55(2) \gamma = 86.79(2)$	296.2(2)	
CdPbP ₂ O ₇	ΡĪ	a = 8.902(4) c = 6.728(4) $\beta = 131.51(3)$	$b = 6.741(2) \alpha = 86.58(4) \gamma = 74.46(3)$	275.1(2)	
CdCoP ₂ O ₇	ΡĪ	a = 6.522(2) c = 6.422(2) $\beta = 81.72(2)$	$b = 6.587(2) \alpha = 83.28(3) \gamma = 67.34(2)$	251.4(1)	
CdCuP ₂ O ₇	<i>P</i> 1	a = 5.516(4) c = 5.504(3) $\beta = 103.70(6)$	b = 4.504(2) $\alpha = 99.65(3)$ $\gamma = 99.79(5)$	127.8(1)	

130

Diphosphate	Coordination		Mean bond values			P-O-P angle	Type of
	Cd	A	$\langle Cd-O \rangle$	$\langle A-O \rangle$	$\langle P-O \rangle$	(deg)	structure
$Cd_{1.25}Ca_{0.75}P_2O_7$	6,8ª	8	2.305(9)	2.538(10)	1.534(11) 1.539(10)	132.4(10)	D
CdSrP ₂ O ₂	5	8	2.29(1)	2.635(1)	1.53(2)	130.0(9)	D
CdBaP ₂ O ₂	6	9	2.34(1)	2.86(1)	1.54(1)	132.2(8)	D
CdPbP ₂ O ₇	6	7	2.29(2)	2.52(3)	1.55(2) 1.53(2)	132.0(1)	D
$CdCoP_2O_7$	5	6	2.28(1)	2.16(1)	1.53(1) 1.55(1)	134.0(7)	D
$CdCuP_2O_7$	6 ^a	6 ^a	2.22(4) 2.25(4)	2.22(4) 2.25(4)	1.53(4) 1.57(4)	142.0(2)	Т

TABLE 2. Cation coordination with bond lengths and P-O-P angle in (Cd, A)₂ P_3O_7 dichromate (D) or thortveitite-type (T) structure

^aCd-Ca: mixed site coordination. Cd-Cu: mixed site coordination.

Fig. 6. Staggered and eclipsed conformations of P_2O_7 in $CdAP_2O_7$, $A \equiv Ca$, Sr, Ba, Pb, Co and Cu.

respectively ninefold, eightfold and sixfold oxygen coordination in these diphosphate structures.

Figure 6 shows the staggered and eclipsed conformations of the P_2O_7 group observed in the phosphates with different crystal structures obtained in this work.

Generally, the P_2O_7 conformation in the mixed diphosphates $(A, B)_2P_2O_7$ follows the parent structure of the biggest cation A or B (dichromate type). This was observed in $(Cd, A)_2P_2O_7$ with $A \equiv Ca$, Sr, Ba, Pb and Co, except for $(Cd_{0.5}Cu_{0.5})_2P_2O_7$ phosphate where P_2O_7 groups have a staggered conformation related to the thortveitite-type structure as observed in the $Cu_2P_2O_7$ framework (Table 2).

More structural details on diphosphates reported in this paper will be published elsewhere.

Acknowledgment

The authors are indebted to the "National Science Foundation" for financial aid in the fulfilment of the present work.

References

- 1 C. Calvo, Acta Crystallogr., 23 (1967) 289.
- 2 C. Calvo, Can. J. Chem., 43 (1965) 1139.
- 3 K. Lukaszewicz, Bull. Acad. Pol. Sci. Ser. Sci. Chim., 15 (2) (1967) 53.

131

- 4 T. Stefanidis and A. G. Nord, *Acta Crystallogr.*, *C*, 40 (1984) 1995.
- 5 N. Krishnamachari and C. Calvo, Acta Crystallogr., B, 28 (1972) 2883.
- 6 B. E. Roberston and C. Calvo, Acta Crystallogr., 22 (1967) 665.
- 7 B. E. Roberston and C. Calvo, Can. J. Chem., 46 (1968) 605.
- 8 K. Lukaszewicz, Bull. Acad. Pol. Sci. Ser. Sci. Chim., 15 (2) (1967) 47.
- 9 A. Pietraszko and K. Lukaszewicz, Bull. Acad. Pol. Sci. Ser. Sci. Chim., 16 (4) (1968) 183.
- 10 R. Masse, J. C. Guitel and A. Durif, *Mater. Res. Bull.*, 14 (1979) 337.
- 11 B. E. Roberston and C. Calvo, J. Solid State Chem., 1 (1970) 120.
- 12 C. Calvo, Can. J. Chem., 43 (1965) 1147.
- 13 J. T. Hoggins, J. S. Swinnea and H. Steinfink, J. Solid State Chem., 47 (1983) 278.
- 14 D. W. J. Cruickshank, H. Lynton and G. A. Barclay, Acta Crystallogr., 15 (1962) 491.
- 15 C. Calvo and P. K. L. Au, Can. J. Chem., 47 (1969) 3409.
- 16 Natl. Bur. Stand. (U.S.), Monogr., 25 (16) (1979) 26.
- 17 C. Calvo, Inorg. Chem., 7 (1968) 1345.
- 18 N. C. Webb, Acta Crystallogr., 21 (1966) 942.
- 19 J.-C. Grenier and R. Masse, Bull. Soc. Fr. Mineral. Crystallogr. 90 (1967) 285.
- 20 L.-O. Hagman, I. Jansson and C. Magneli, Acta Chem. Scand., 22 (5) (1968) 1419.
- 21 C. W. W. Hoffman and R. W. Mooney, J. Electrochem. Soc., 107 (1960) 854.
- 22 Natl. Bur. Stand. (U.S.), Monogr., 25 (16) (1979) 19.
- 23 D. F. Mullica, H. O. Perkins, D. A. Grossie, L. A. Boatner and B. C. Sales, J. Solid State Chem., 62 (1986) 371.
- 24 J. K. Brandon and I. D. Brown, Can. J. Chem., 46 (1968) 933.
- 25 A. Boukhari, in preparation.
- 26 D. Riou, P. Labbe and M. Goreaud, C.R. Acad. Sci. Paris, Ser. 11, 307 (1988) 1751.

- 27 D. Riou, P. Labbe and M. Goreaud, C.R. Acad. Sci. Paris, Ser. II, 307 (1988) 903.
- 28 A. Moqine, A. Boukhari and E. M. Holt, Acta Cryst., C47 (1991) 2294.
- 29 A. Boukhari, in preparation.
- 30 D. Riou and M. Goreaud, Acta Crystallogr., C, 46 (1990) 1191.
- 31 A. Moqine, A. Boukhari, L. Elammari and J. Durand, J. Solid State Chem., in the press.
- 32 A. Alaoui El Belghiti, A. Boukhari and E. M. Holt, J. Solid State Chem., submitted for publication.
- 33 A. Alaoui El Belghiti, A. Boukhari and E. M. Holt, in preparation.
- 34 A. Alaoui El Belghiti, A. Boukhari and E. M. Holt, Acta Crystallogr. C, 47 (1991) 473.
- 35 Data Collection Operation Manual, Nicolet XRD Corp., Cupertino, CA, 1980.

.